You are currently browsing the tag archive for the ‘Budgeting’ tag.

Our benchmark research on next-generation business planning finds that a large majority of companies rely on spreadsheets to manage planning processes. For example, four out of five use them for supply chain planning, and about two-thirds for budgeting and sales forecasting. Spreadsheets are the default choice for modeling and planning because they are flexible. They adapt to the needs of different parts of any type of business.vr_NGBP_09_spreadsheets_dominant_in_planning_software Unfortunately, they have inherent defects that make them problematic when used in collaborative, repetitive enterprise processes such as planning and budgeting. While it’s easy to create a model, it can quickly become a barrier to more integrated planning across the business units in an enterprise. As I’ve noted before, software vendors and IT departments have been trying – mainly in vain – to get users to switch from spreadsheets to a variety of dedicated applications. They’ve failed to make much of a dent because although these applications have substantial advantages over spreadsheets when used in repetitive, collaborative enterprise tasks, these advantages are mainly realized after the model, process or report is put to use in the “production” phase (to borrow an IT term).

Host Analytics Modeling Cloud is designed to address the needs of people who – often working alone – create representations of the business or portions of the business used in a collaborative planning process. These individuals often create analyses and reports that complement the planning process. To date most dedicated applications have been far more difficult than spreadsheets for the average business user to use in the design and test phases. To convince people to switch to its dedicated application, a vendor must offer an alternative that lets users model, create reports, collect data and create dedicated data stores as easily as they can do it in a desktop spreadsheet.

Modeling Cloud is designed to integrate individual businesses unit plans with a company’s financial planning, forecasting and budgeting. It attempts to address the spreadsheet problem by enabling individuals in business units to create and update plans and budgets and their underlying models in a way that is consistent with what they are used to doing, but also makes it easy to tie these together to achieve an integrated company-wide view. Compared to desktop spreadsheets, this approach better enables a company to analyze and refine plans and budgets. It also facilitates advanced modeling capabilities such as rolling quarters forecasting and contingency and what-if planning. Compared to desktop spreadsheets, with Modeling Cloud it’s much easier to consolidate the plans from multiple contributors and then drill back down into individual plans and their underlying assumptions. The software also has mobile features that enable individuals to review, contribute and approve plans and budgets on the go. Each of these capabilities increase the business value of the company’s planning and budgeting.

vr_NGBP_03_collaboration_is_important_for_planningPeople and businesses plan in order to be successful. Companies do a lot of planning – some formal and some informal – about all aspects of the business including sales, production, headcount, distribution and the supply chain. Done properly, planning is the best way to get everyone organized in executing the plan. At that point they can take advantage of collaboration, which is essential to effective planning and budgeting. Our research finds that in the large majority (85%) of companies that collaborate well in their planning and budgeting processes participants regard it as well managed. Dedicated applications work better than desktop spreadsheets when it comes to bringing individual models, plans, budgets and forecasts into an integrated companywide view. In contrast it’s difficult and time-consuming to combine desktop spreadsheets into a consolidated view, and it’s even harder and more tedious to look back into the underlying data in seeking a better understanding of important differences between individual plans and models.

Modeling Cloud is designed to address an important need in corporate planning – closely tying all aspects of business planning to financial planning and budgeting and helping organizations collaborate across business silos. Our research shows that integrated planning works better, as I have written : Two-thirds of companies in which information in individual plans is directly linked have a planning process that works well vr_NGBP_02_integrated_planning_works_betteror very well, compared to 40 percent in which the information must be copied and only 25 percent where there is little or no connection.  As a rule, providing users with a familiar environment in which to create business models, create and compare different business scenarios, analyze actuals and create reports goes a long way toward mitigating the difficulty of having to learn to use a new tool that has been a barrier to the use of dedicated planning software across an enterprise and makes it easy to directly link plans. Business planning can be more effective if individuals have software that gives them a high degree of flexibility to create models and plans in a way that works comfortably for them yet also facilitates the integration of everyone’s plans into a consolidated view.  Our research shows that dedicated planning applications can help users align their plans with strategy and the rest of the organization. For example, companies that use them said twice as often that they are able to estimate accurately one plan’s impact on others as those that use spreadsheets. In addition, two out of three that have dedicated applications said they are satisfied with their planning process and that their plans are accurate.

Information technology has the potential to make business planning more useful, as I have noted, enabling it to improve a company’s performance and increase its competitiveness. One of the necessary tools for more fully integrating business and financial planning is a software and data environment that enables business people to plan their part of the business in a way that is familiar, productive and useful to them in achieving their objectives. That environment also must enable them to communicate the financial consequences of their business plan to inform the financial forecasting, planning, budgeting and review processes. Host Analytics Modeling Cloud is designed to do that. It’s not a perfect substitute for spreadsheets, which still excel in their ability to help people quickly translate their thoughts into models and reports. But because Modeling Cloud eliminates most of the hassles and defects of spreadsheets (for example, the ability to quickly store, retrieve and consolidate data from a single authoritative source), it  is ultimately a much more attractive alternative. I recommend that Host Analytics customers assess using Modeling Cloud in their organization and that buyers of dedicated planning applications include this type of capability in their evaluation of vendors’ offerings.


Robert Kugel – SVP Research

IBM’s Vision user conference brings together customers who use its software for financial and sales performance management (FPM and SPM, respectively) as well as governance, risk management and compliance (GRC). Analytics is a technology that can enhance each of these activities. The recent conference and many of its sessions highlighted IBM’s growing emphasis on making more sophisticated analytics easier to use by – and therefore more useful to – general business users and their organizations. The shift is important because the IT industry has spent a quarter of a century trying to make enterprise reporting (that is, descriptive analytics) suitable for an average individual to use with limited training. Today the market for reporting, dashboards and performance management software is saturated and largely a commodity, so the software industry – and IBM in particular – is turning its attention to the next frontier: predictive and prescriptive analytics. Prescriptive analytics holds particular promise for IBM’s analytics portfolio.

The three basic types of analytics – descriptive, predictive and vr_NG_Finance_Analytics_09_too_much_time_to_prepare_dataprescriptive – often are portrayed as a hierarchy, with descriptive analytics at the bottom and predictive and prescriptive (often referred to as “advanced analytics”) on the next two rungs. Descriptive analytics is like a rear-view mirror on an organization’s performance. This category includes variance and ratio analyses, dashboards and scorecards, among others. Continual refinement has enabled the software industry to largely succeed in making descriptive analytics an easy-to-use mainstream product (even though desktop spreadsheets remain the tool of choice). Today, companies in general and finance departments in particular handle basic analyses well, although they are not as effective as they could be. Our research on next-generation finance analytics shows, for example, that most financial analysts (68%) spend the largest amount of their time in the data preparation phases while a relatively small percentage (28%) use the bulk of their time to do what they are supposed to be doing: analysis. We find that this problem is mainly the result of issues with data, process and training.

The upward shift in focus to the next levels of business analytics was a common theme throughout the Vision conference. This emphasis reflects a key element of IBM’s product strategy: to achieve a competitive advantage by making it easy for most individuals to use advanced analytics with limited training and without an advanced degree in statistics or a related discipline.

The objective in using predictive analytics is to improve an organization’s ability to determine what’s likely to happen under certain circumstances with greater accuracy. It is used for four main functions:

  • Forecasting – enabling more nuanced projections by using multiple factors (such as weather and movable holidays for retail sales)
  • Alerting – when results differ materially from forecast values
  • Simulation – understanding the range of possible outcomesvr_NGBP_08_predictive_analytics_underused_in_planning under different circumstances
  • Modeling – understanding the range of impacts of a single factor.

Our research on next-generation business planning finds that despite its potential to improve the business value of planning,  only one in five companies use predictive analytics extensively in their planning processes.

Predictive analytics can be useful for every facet of a business and especially for finance, sales and risk management. It can help these functions achieve greater accuracy in sales or operational plans, financial budgets and forecasts. The process of using it can identify the most important drivers of outcomes from historical data, which can support more effective modeling. Because plans and forecasts are rarely 100 percent accurate, a predictive model can support timely alerts when outcomes are significantly different from what was projected, enabling organizations to better understand the reasons for a disparity and to react to issues or opportunities sooner. When used for simulations, predictive models can give executives and managers deeper understanding of the range of potential outcomes and their most important drivers.

Prescriptive analytics, the highest level, help guide decision-makers to make the best choice to achieve strategic or tactical objectives under a specified set of circumstances. The term is most widely applied to two areas:

  • Optimization – determining the best choice by taking into account the often conflicting business objectives or other forms of trade-offs while factoring in business constraints – for example, determining the best price to offer customers based on their characteristics. This helps businesses achieve the best balance of potential revenue and profitability or farmers to find the least costly mix of animal feeds to achieve weight objectives.
  • Stochastic Optimization – determining the best option as above but with random variables such as a commodity price, an interest rate or sales uplift. Financial institutions often use this form of prescriptive analytics to understand how to structure fixed income portfolios to achieve an optimal trade-off between return and risk.

General purpose software packages for predictive and prescriptive analytics have existed for decades, but they were designed for expert users, not the trained rank-and-file. However, some applications that employ optimization for a specific purpose have been developed for nonexpert business users. For example, price and revenue optimization software, which I have written about is used in multiple industries.  Over the past few years, IBM has been making progress in improving ease of use of general purpose predictive and prescriptive analytics. These improvements were on display at Vision. One of the company’s major initiatives in this area is Watson Analytics. It is designed to simplify the process of gathering a set of data, exploring it for meaning and importance and generating graphics and storyboards to convey the discoveries. Along the way, the system can evaluate the overall suitability of the data the user has assembled for creating useful analyses and assisting general business users in exploring its meaning. IBM offers a free version that individuals can use on relatively small data sets as a test drive. Watson is a cognitive analytics system, which means it is by nature a work in progress. Through experience and feedback it learns various things including terminologies, analytical methods and the nuances of data structures. As such it will become more powerful as more people use it for a wider range of uses because of the system’s ability to “learn” rather than rely on a specific set of rules and logic.

Broader use of optimization is the next frontier for business software vendors. Created and used appropriately, optimization models can deliver deep insights into the best available options and strategies more easily, accurately, consistently and effectively than conventional alternatives. Optimization eliminates individual biases, flawed conventional wisdom and the need to run ongoing iterations to arrive at the seemingly best solution. Optimization is at the heart of a network management and price and revenue optimization, to name two common application categories. Dozens of optimization applications (including ILOG, which IBM acquired) are available, but they are aimed at expert users.

IBM’s objective is to make such prescriptive analytics useful to a wider audience. It plans to infuse optimization capabilities it into all of its analytical applications. Optimization can be used on a scale from large to small. Large-scale optimization supports strategic breakthroughs or major shifts in business models. Yet there also are many more ways that the use of optimization techniques embedded in a business application – micro-optimization – can be applied to business. In sales, for example, it can be applied to territory assignments taking into account multiple factors. In addition to making a fair distribution of total revenue potential, it can factor in other characteristics such as the size or profitability of the accounts, a maximum or minimum number of buying units and travel requirements for the sales representative. For operations, optimization can juggle maintenance downtime schedules. It can be applied to long-range planning to allocate R&D investments or capital outlays. In strategic finance it can be used to determine an optimal capital structure where future interest rates, tax rates and the cost of equity capital are uncertain.

Along the way IBM also is trying to make optimization more accessible to expert users. Not every company or department needs or can afford a full suite of software and hardware to create applications that employ optimization. For them, IBM recently announced Decision Optimization on Cloud (DOcloud), which provides this capability as a cloud-based service; it also broadens the usability of IBM ILOG CPLEX Optimizer. This service can be especially useful to operations research professionals and other expert users. Developers can create custom applications that embed optimization to prescribe the best solution without having to install any software. They can use it to create and compare multiple plans and understand the impacts of various trade-offs between plans. The DOcloud service also provides data analysis and visualization, scenario management and collaborative planning capabilities. One example given by IBM is a hospital that uses it to manage its operating room (OR) scheduling. ORs are capital-intensive facilities with high opportunity costs; that is, they handle procedures that utilize specific individuals and different combinations of classes of specialists. Procedures also have different degrees of time flexibility. Without using an optimization engine to take account of all the variables and constraints, crafting a schedule is time-consuming. And since “optimal” solutions to business problems are fleeting, an embedded optimization engine enables an organization to replan and reschedule quickly to speed up decision cycles.

Businesses are on the threshold of a new era in their use of analytics for planning and decision support. However, numerous barriers still exist that will slow widespread adoption of more effective business practices that take full advantage of the potential that technology offers. Data issues and a lack of awareness of the potential to use more advanced analytics are two important ones. Companies that want to lead in the use of advanced analytics need leadership that focuses on exploiting technology to achieve a competitive advantage.


Robert Kugel – SVP Research

Twitter Updates


  • 103,435 hits

Get every new post delivered to your Inbox.

Join 75 other followers

%d bloggers like this: